
Oracle Banking Digital

Experience
UX Extensibility Toolkit

Release 19.1.0.0.0

Part No. F18558-01

May 2019

Preface

 ii

User Interface Workbench ii

User Interface Workbench

May 2019

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use
this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Preface

 iii

User Interface Workbench iii

Table of Contents

1. Preface ... 5
1.1 Intended Audience .. 5

1.2 Documentation Accessibility ... 5

1.3 Access to Oracle Support ... 5

1.4 Structure .. 5

1.5 Related Information Sources... 5

2. User Interface Workbench ... 6
3. UI workbench installation .. 8
4. Layout Selection ... 9
5. Folder Creation ... 11
6. REST API Selection .. 15
7. REST API Configuration .. 19
8. Chain REST APIs .. 21
9. Design Component... 27
10. Available Components ... 41
11. Available Attributes .. 73

11.1 Label: ... 73

11.2 Value: .. 78

11.3 Options: ... 88

11.4 Value change handler: .. 93

11.5 Validations: .. 98

11.6 Required field: ... 103

11.7 Add Loop: .. 103

11.8 Add Custom Attributes: ... 105

11.9 Conditional Field: .. 108

11.10 Grid: ... 112

11.11 Select anchor type:.. 115

11.12 Add formatter: .. 119

11.13 Select Size: ... 123

11.14 Enter Image Path: ... 124

Preface

 iv

User Interface Workbench iv

11.15 Enter Initials: .. 125

11.16 Select Type: .. 125

11.17 Selection Mode:... 127

11.18 Enter Allowed File Extensions: .. 128

11.19 Image source: .. 128

11.20 Enter Minimum Length: ... 129

11.21 Enter Maximum Length: .. 130

11.22 Enter Step: .. 130

11.23 Source variable: .. 131

11.24 Id attribute: .. 132

11.25 Renderer ID: .. 132

11.26 Pagination: .. 133

11.27 Indexer: ... 137

11.28 ID: .. 139

11.29 Enter menu launcher: .. 139

11.30 Columns: ... 140

11.31 Row renderer: .. 144

11.32 Aria label ... 145

11.33 Tag type: ... 146

11.34 Binding source: .. 147

11.35 Enter rows ... 150

11.36 Selected step: .. 151

11.37 REST API Chain and Hook Function .. 152

11.38 Select Type of Container ... 155

Preface

 5

User Interface Workbench 5

1. Preface

1.1 Intended Audience

This document is intended for the following audience:

 Customers

 Partners

1.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=accandid=docacc.

1.3 Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=accandid=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=accandid=trs if you are hearing impaired.

1.4 Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the User
Manual.

The subsequent chapters describes following details:

 Configuration / Installation.

1.5 Related Information Sources

For more information on Oracle Banking Digital Experience Release 19.1.0.0.0, refer to the following
documents:

 Oracle Banking Digital Experience Licensing Guide

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

User Interface Workbench

 6

User Interface Workbench 6

2. User Interface Workbench

User Interface Workbench is a development tool to design the User Interface of an Application using
APIs to fetch data, enabling communication of one screen with another and generating screens to be
displayed to the end user. This tool aims at minimizing developers’ efforts and time by generating the
working screens automatically with minimal user input.

The tool also enables the developers to make the changes in the existing screens created by them or
provided out of box which are designed using the UI Workbench tool.

Components:

The screens created consist of the following components:

 Template: It decides visual representation of data on the front-end

 Model: It is responsible for fetching data from REST APIs

 Bindings: It consists of logic for processing the data fetched from the APIs

 Resource Bundle: It comprises of strings which are to be displayed on the screen

 Hooks: It comprises of user provided logic.

 Metadata: It consists of summarized information which can generate all the above mentioned
artefacts.

Pre-requisites:

 Basic knowledge of Swagger. (To know more about swagger refer https://swagger.io/)

 Basic knowledge of JavaScript, Knockout Js

 Basic knowledge of Oracle JET

 Basic knowledge of Sass

Workflow:

The process to create the screen ready to be used by the user / customer is as follows:

1. Install UI Workbench: The tool can be easily installed simply by running the setup file.

2. Select/Create Screen Layout: User can select one of the predefined screen layouts according to
his requirement

https://swagger.io/

User Interface Workbench

 7

User Interface Workbench 7

3. Create Folder(Screen Information): User has to provide basic screen details like the name of
the screen and the type of the screen e.g. (transaction, inquiry, and widget)

4. Select REST APIs: User can select multiple REST APIs which will be needed for fetching
required information to display on the screen.

5. Screen Designing: User can design how the screen content will be displayed by using the form
elements (e.g. Input Box, Text Area) available in the tool. User can drag and drop these elements
and design the screen as per requirement

UI workbench installation

 8

User Interface Workbench 8

3. UI workbench installation

As a first step, user should download the UI Workbench setup from the Oracle Software Delivery
Cloud portal. Once the setup is downloaded, double click to install the tool.

After installation, user would be directed to the following Landing Page. User is expected to provide
the URL where the swagger document of the RESTful APIs are hosted.

To know more about swagger refer https://swagger.io/

Swagger version (By default it is v1)

Directory path : <OBDX codebase location>/core/channel

Provide these details at the time of installation. The path can be changed anytime later by clicking on
settings. Please note: Every time the path is changed, data is lost.

https://swagger.io/

Layout Selection

 9

User Interface Workbench 9

4. Layout Selection

Next step is to select the screen layout. The tool offers five pre-defined templates which will decide
the layout of the screen that the user wants to create. The user can select any of these layout from
the list provided or can create a custom layout in case the desired layout is not found in the
mentioned list. To know the steps to create the custom layout Please refer Grid section.

E.g. incase if user select the following layout, the label and value fields will be vertically aligned and in
a single column.

Layout Selection

 10

User Interface Workbench 10

In case the user wants to change the layout once he has moved on to the next step, he can navigate
to this step by clicking back button at the bottom of the screen. Layout can be changed at any given
point of time during the process of screen creation.

Folder Creation

 11

User Interface Workbench 11

5. Folder Creation

As a part of next step, following screen is displayed to the user to create the new folder. User is
expected to furnish following information.

 Module Name:

Module is a category of the screen the user are creating, for e.g. a fund-transfer screen would be
of category Payments. So in this case, the module name would be payments. Module consists of
various components which contains the artefacts of the screen the user wants to generate.

 Component Name:

Component name would be the type of screen e.g. Funds transfer, Cheque Book Request,
Letter of Credit Initiation, Bill Payment, New Deposit etc.

 Component Type:

Component type is the type screen layout the user wants to be displayed. User can select from
the options as Individual page Transaction Page or a Widget. (Explained in the detail below)

 Following are the different component types and the examples where these are used.

 Individual Page :

Individual page is a stand-alone page that consists of the detailed information for the Selected
transaction/component e.g. Account Details (Component) in a standalone page shows the
various Balances, transactions and other information of the selected accounts.

Folder Creation

 12

User Interface Workbench 12

 Transaction Page –

Transaction type is a type of page where the customer or user enters information asked on the
screen, reviews the same and submit it for further processing. Transaction component
consists of 3 screens.

Initiation screen: This is a user input screen where the user is expected to provide the details
of the transaction e.g. account number, amount to be transferred.

Review Screen: In this screen, the user can review the details given by him on the initiation
screen. He can confirm the details or can go back and edit the detail he wants to change.

Confirmation Screen: If the transaction is successful, user will be directed to this screen.

Folder Creation

 13

User Interface Workbench 13

Folder Creation

 14

User Interface Workbench 14

When the user selects component type as transaction, an additional step to design the review screen
will be added. The user can design the review screen as per his requirement. Details on how to
design the review screen can be found at

 Widget -

Widget is a small section on the screen especially on the Dashboard that displays commonly
used functions or important information in a summarized form. The component generated of
this type will be shown on the dashboard.

REST API Selection

 15

User Interface Workbench 15

6. REST API Selection

In this step, the user has to select the REST APIs to enable the functioning of the elements on the
screen. The dropdown will contain all the REST APIs mentioned in the swagger document hosted on
the URL which user had specified in the landing page.

In case, the user needs REST APIs whose documentation is hosted on other URLs apart from the
ones the user had mentioned earlier, the user can add them by selecting manage Swagger URLs
link.

On clicking the link, a panel will open on the left side. By default it will contain the URL and the
version, the user had specified during installation. User can change this URL or can add multiple
URLs by clicking on ‘Add URL’ text link, depending upon the requirements.

REST API Selection

 16

User Interface Workbench 16

Once the user has entered the URLs he can save the details by clicking the save button. After the
dialog box closes, all the REST APIs will be consolidated and are available in the dropdown

User can select multiple RESTs as per requirement. All the selected RESTs are shown in the list view
form.

User can configure the REST properties by clicking on the edit icon.

On clicking on the edit button, a panel will open on right which has three configuration options.

Parameters are the options that the user can pass with the endpoint (such as specifying the response
format or the amount returned) to influence the response.

REST API Selection

 17

User Interface Workbench 17

 Required Parameters:

They are also known as path parameters. These parameters are part of the REST URL
written within curly braces. E.g. /accessPoints/ {accessPointId}.Here accessPointId is the
required parameter.

 Optional Parameters:

They are also known as query parameters. These parameters are part of the REST URL
written at the end of the URL followed by? Symbol. E.g. /accessPoints? NoOfpoints=3. Here
NoOfPoints is an optional parameter.

The value of these parameters can be set by two ways.

1. Current component sets the value.

2. Value is passed to the current component from the previous component.
In case the parameter values are being passed from the previous component, the
variable name has to be mentioned in this panel

The current parameter value is set in later steps, refer Value attribute.

 Configurations:

The GET REST API can be used for two purposes.

1. To fetch details

2. To download a file

If user wants to use GET REST API as a download service ,user can enable the switch
named as 'Use as download Service' in configurations section

REST API Selection

 18

User Interface Workbench 18

REST API Configuration

 19

User Interface Workbench 19

7. REST API Configuration

In this step the user can configure how the selected REST APIs will be called when the screen is
loaded. There are two sections in this step.

 Chain selected REST APIs

There are 3 ways how REST APIs can be called:

 Independent

If all the selected REST APIs are to be called irrespective of any dependency on other
APIs, then the user has to select the NO option.

 Sequential

If a REST API calling is dependent on the response of other REST APIs then such case
is known as sequential manner. For e.g. A REST API fetching details of cities in a
country is dependent on the response of API fetching the list of countries. If REST APIs
are to be called in such a manner, select the option ‘Yes’.

On selecting the ‘Yes’ option, a panel appears on the left having list of selected REST
APIs

 Parallel

If REST APIs are to be called together and the combined response of these APIs are
needed then they are to be called parallely. If REST APIs are to be called in such a
manner, select the option ‘Yes’.

On selecting the ‘Yes’ option, a panel appears on the left having list of selected REST
APIs

REST API Configuration

 20

User Interface Workbench 20

How to chain Rests, refer Chain RESTS.

Chain REST APIs

 21

User Interface Workbench 21

8. Chain REST APIs

User is expected to chain the REST APIs, if the REST APIs are to be called parallel or sequentially.
To chain the APIs, the user must select ‘Yes’ option in the previous screen. Once the user selects
‘Yes’, a panel appears on the left having list of selected REST APIs.

To start chaining, user needs to drag the APIs and drop it in the chaining section shown in the middle
section of the screen.

Once the user has dropped the REST APIs in the middle section, a right panel gets opened where
user has to provide information about the REST type and if the RESTs are parallel independent or
dependent.

Some common terms used in chaining are:

REST Type:

 Parent – If this option is selected then, every service call flow needs a parent rest which will be
called first.

 Child - If this option is selected then, service to be called after parent call finishes.

Is this REST Parallel Independent or Parallel Dependent?

 Parallel Independent – On selecting this option, service calls can be fired independently.

 Parallel Dependent – On selecting this option, service calls logic which depend on response of
an immediate parallel service call, those immediate service calls needs to be parallel dependent.

Chain REST APIs

 22

User Interface Workbench 22

The chaining structure is similar to tree structure. The top most node would be parent and the other
nodes would be child nodes.

If user selects REST type as Parent then the node with letter P will be generated.

If user selects REST type as Child then the node with letter C will be generated.

Consider an example if two REST APIs are to be called in a sequential manner.

The first API to be called will be declared as Parent and since no other API is to be called along with
this API, it will be parallel independent.

Chain REST APIs

 23

User Interface Workbench 23

The second API which is to be called after the response of the first API is received, will be declared
as a child and parallel independent

To establish the linkage between the parent and its child nodes and distinguish them from each other,
the connection has to be made. To make a connection, drag the child REST from the chaining section
and drop it on the Parent REST and then drag the child node down, the connection will be made.

Chain REST APIs

 24

User Interface Workbench 24

The connection is only to be established if the services are to be called in sequential manner.

In case, all the services are to be called together and the wait till response of each service has been
received, connection will be not established as they all act as parent nodes. In such case, all REST
APIs will be configured as parent node and will be parallel dependent since they will have to wait for
the response of the selected APIs.

If out of the selected RESTs, some of them are sequential or parallel Dependent and rest of them are
parallel Independent, the chaining is still to be performed. To declare a REST to be independent of
other rests, select the rest type as Parent and Parallel independent and do not make any connections
with those RESTs. Incase all the REST APIs are independent of each other then there is no need of
chaining.

If user wants to call the REST APIs as soon as the screen loads, the option ‘Yes’ needs to be
selected.

Chain REST APIs

 25

User Interface Workbench 25

Once the yes option is selected the REST Chains will be shown to user. In case of independent
RESTs their name will appear.

If there is a sequential rest then it will be displayed as

If there is a parallel dependent chain then it will be displayed with their names together

User can select which REST chains he wants to call when the screen loads. Once he has selected
the chains, user needs to click on generate init function to generate the code to fire the services on
the screen load.

Once the function is generated user can click on Edit Init Function link to edit the code to perform
desired actions.

Chain REST APIs

 26

User Interface Workbench 26

Design Component

 27

User Interface Workbench 27

9. Design Component

This step enables the user to design how the contents of the screen are to be displayed. User can
make use of available form elements e.g. Input Text, Button etc. Each element can further be
configured, placed and styled by the user as per the screen requirement.

The following information is captured on this screen.

 Component Header

The text entered in this field will be displayed as the Page Title. E.g. Cheque Book Request,
Loan Repayment etc.

 Validation Tracker ID

The ID provided by the user should be the ID of the element within which the form elements
reside. The tool by default generates this ID. So this is an optional field. However there may
arise a situation where the user needs to use such an ID. In such case, user can provide
custom ID in this field.

 Component CSS Style

User has the provision to provide custom style sheet (CSS) for the screen he wants to generate
and change the look and feel of the component as per his requirement.

To create custom style sheet, user has to toggle the button to Yes. A CSS Editor button will
appear on the right of the toggle button.

Design Component

 28

User Interface Workbench 28

On this button click, an editor window pops up. This code editor supports Sass(Syntactically
awesome style sheets). User can provide the custom classes in this editor.

After component creation, Sass file and processed Sass i.e. CSS file will be generated that will
contain user defined style definition written in sass editor.

The next section can be considered as a canvas where user can design the screen contents.

Design Component

 29

User Interface Workbench 29

The links in the top right section in the above image are explained below:

 Available Components

On clicking this link, a panel opens on the left side which contains the UI elements supported by
the tool.

 Edit Init Function

This link opens the editor for writing ‘init function’, which you generated in previous step (REST
API Configuration). After making changes to init function, click save to apply the changes.
Clicking on cancel button will simply discard the changes.

Design Component

 30

User Interface Workbench 30

 More

On clicking more, context menu is opened that has following options:

 Custom Resource Bundle

To add custom entry to the resource bundle file (which contains all the text that will be
displayed on the screen), user can select this option. After selecting this option, editor
window will pop up where user can add the custom entry.

To add new entry, add key and the resource value inside the braces of ’const nls’ , as shown in
the picture below:

Design Component

 31

User Interface Workbench 31

This resource bundle value can be used in two way in the component

1. Inside init function: Here resource bundle value can be accessed with code
self.nls.custom_key.

2. Inside html: In normal scenario, tool creates resource bundle for every string attached to
html element. But in special case, this can be simply done by writing
$component.nls.custom_key.

 Component JSON

Selecting this option will open editor window. On creation of component, this JSON file
is created inside the component.

To create a screen, first element has to be Page Section (refer Page section doc), which can be
found in framework Components section of left panel.

Design Component

 32

User Interface Workbench 32

To add any element from left panel to form area, either drop it on a particular location or just
click on it to add it as a last element in form area.

 After clicking on Page Section option panel on the right will be opened where details for this
element are captured.

After filling compulsory fields, click confirm to add element. In case all the required fields are not
filled, error message will be thrown.

Design Component

 33

User Interface Workbench 33

 For Page Section, only Label element is compulsory. After confirming, Page Section is added to
the form area.

To make changes to the element, click on edit icon or to remove the element click on delete
icon, or to copy element just below this click on copy icon.

User can add as many Page Sections as needed in the screen and add form elements to it.

Adding form element to page-section

After adding Page Section, any element which are present in available element panel can be
added or dropped below it. For example, to add input box click, on available components -
>Expand Forms section ->click on Input Text element

Fill in the required details in the right panel for the element and click confirm. Input element will
be added to the form layout below Page Section.

Reordering a form element

Added elements inside form area can be re-ordered among themselves. To re-order an element
click and hold the right most drag icon and release at desired position.

Design Component

 34

User Interface Workbench 34

Deleting a form element

To delete form element click on delete icon.

Copying a form element

To copy an already present form element in form area, click the copy icon, new copy of the
selected element will added below it which can again be re-ordered if required.

Editing a form element

To edit an already present form element in form area click the edit icon, a right panel will open
where the details can be updated. After editing, click on confirm to save the changes.

Design Component

 35

User Interface Workbench 35

Creating Component

Once the user is satisfied with the screen design, user can click on the create component button
to generate the component.

If all the details filled for each form element are valid then component will be generated and a
success message will be displayed in a dialog box stating that the components have been
created successfully.

Design Component

 36

User Interface Workbench 36

Click the OK button or cancel icon to close the pop up. User can make further changes to it and
then update the created component by clicking on ‘Create Component’ button.

In case there is an error in case of component generation, error message will be displayed in a
dialog box.

To find out what errors caused the screen creation failure, click on View Logs option which can
be found in the setting icon on top right corner of the tool in the dark grey panel.

Design Component

 37

User Interface Workbench 37

User can fix the errors and can click on Create Component again. If there are no further errors,
component will be generated and success window will be displayed.

Generated Artefacts

After Creating components following files are generated inside channel path selected by the
user;

a. Inside channel_path/component/module_name/component_name:

1. Hooks.js – It contains all the custom code written by user in the Init function or Hook

function.

2. Loader.js – This is the entry file to load the component.

3. Model.js – This file is responsible for communicating with server and transferring data

between component and server.

Design Component

 38

User Interface Workbench 38

4. Component_name.js- This file is the view model for the component.

5. Component_name.html – It contains the html code for the designed layout.

6. Component_name.json – Code written in component JSON window is added in this

file

7. Component_name.scss - If Component SCSS style was turned on, a SCSS file is

created which contains the code written in SCSS Editor.

8. Component_name.css - If Component CSS style was turned on, the same file is

created which contains code written in CSS Editor.

e.g. Below screenshot refers to a virtual-account-record-list component which is generated
using the tool.

Note: Generated artefacts must not be overwritten manually.

b. Inside channel_path/resources/nls:

 1. component_name.js – It contains the language specific values entered by user.

c. Inside channel_path/metadata/module_name/component_name:

 1. component_name.json- This is the manifest file for the component.

2. hooks.js- It contains all the custom code written by user in Init function or Hook

function.

E.g. metadata files for Virtual-Account-Record-List component

Design Component

 39

User Interface Workbench 39

Editing Component

All the components, generated using the tool can be edited by opening the component in the tool.

To edit a component, click on File Explorer icon, available at top left corner of the tool in the grey
panel.

All the created components are present under Metadata accordion. To start editing a component,
expand the module_name->component-> click on the component name

Design Component

 40

User Interface Workbench 40

Once the user clicks on the screen name, he will be directed to the screen created during the first
time.

The user can now edit the screen as per requirement and save the changes by clicking on Create
Component Button.

Available Components

 41

User Interface Workbench 41

10. Available Components

There are four types of components available in this panel.

A) Forms

B) Controls

C) Framework Components

D) Visualization

A) Forms

This section contains the components which are required in designing a form.

For example, a Login form accepts user name and password and validates a user . In the example
below, developer can use Input Text and Input Password element for user name and password
respectively.

Following is the list of available components under this section.

1. Anchor Tag

2. Avatar

3. Check Box

4. Combo Box

5. Date Picker

6. File Picker

7. Image

8. Input Number

9. Input Password

10. Input Text

11. List View

12. Menu

13. Radio Buttons

Available Components

 42

User Interface Workbench 42

14. Select

15. Switch

16. Table

17. Text

18. Text Area

19. Train

20. Tree View

B) Controls

This section contains the components which are used to control the activity on the form.

For example, user has a form to transfer money from one account to another account in which he will
have the following two actions:

 Transfer button to confirm the transaction

 Cancel button to cancel the transaction

 In the below example buttons are display ed:

Following is the list of available components under this section.

1. Button

2. Button Set

3. Container

Available Components

 43

User Interface Workbench 43

4. Component Loader

C) Framework Components

This section contains the components which are predefined & supported by OBDX. It has in-built
functionality.

In the below example, an account input component which lists all the accounts of the user and shows
its details like balance and address of the account selected by the user .

Following is the list of available components under this section.

1. Account Input

2. Amount Input

3. Bank Look Up

4. Help Panel

5. Navigation Bar

6. Page Section

7. Row Control

D) Visualization

This section contains the components, which are useful to design a widget that display s information
graphically.

In the below example, a chart that shows the net worth of different accounts (CASA) of the user

Available Components

 44

User Interface Workbench 44

Following is the list of available components under this section.

1. Chart

2. TimeLine

Details of components

A) Forms:

1) Anchor Tag :

Usage : This component is used to add a link. This link can be an image / icon or text.

Example:

Supported attributes:

a) Basic:

 Label

 Format Label

Available Components

 45

User Interface Workbench 45

b) Advanced:

 Select anchor type

 Add formatter

 REST API chain

 Hook functions

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

2) Avatar

Usage : This component is used to display initials for name or product and images in a circle.

Example:

Supported attributes:

a) Basic:

 Label

b) Advanced:

 Select Size

 Enter Image Path

 Enter Initials

 Add Loop

 Add Custom Attributes:

 Conditional Field

Available Components

 46

User Interface Workbench 46

c) Layout:

 Grid

3) Check Box:

Usage : This component is used to add checkbox to allow a user select one or more options
from the available choices.

Example:

Supported attributes:

a) Basic:

 Label

 Hide Label

 Value

 Options

b) Advanced:

 Value Change Handler

 Validations

 Required Field

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

Available Components

 47

User Interface Workbench 47

4) Combo Box:

Usage : This component is used to add a drop down to allow user to make multiple selection
from the predefined options or type his own option.

Example:

Supported attributes:

a) Basic:

I) Label:

 Hide Label

 Value

 Select Type

 Options

b) Advanced

 Value Change Handler

 Validations

 Required Field

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

Available Components

 48

User Interface Workbench 48

5) Date Picker:

Usage : This component is used to add an input box to accept date as an input from user .

Example:

Supported attributes:

a) Basic:

 Label

 Hide Label

 Value

b) Advanced:

 Value Change Handler

 Validations

 Required Field

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

6) File Picker:

Usage : This component is used to add an action as a button to accept the documents (files) as
an input from user .

Available Components

 49

User Interface Workbench 49

Example:

Supported attributes:

 a) Basic:

 Label

d) Advanced:

 Selection Mode

 Enter Allowed File Extensions

 REST API chain

 Hook functions

 Required Field

 Add Loop

 Add Custom Attributes

 Conditional Field

e) Layout:

 Grid

7) Image:

Usage : This component is used to add an image.

Example:

Supported attributes:

a) Basic:

Available Components

 50

User Interface Workbench 50

 Image urce

b) Advanced:

 Add Loop

 II)Add Custom Attributes

 III)Conditional Field

c) Layout:

 Grid

8) Input Number:

Usage : This component is used to add an input box to accept numbers as an input from the
user .

Example:

Supported attributes:

a) Basic:

 Label

 Hide Label

 Value

b) Advanced:

 Enter Minimum Length

 Enter Maximum Length

 Enter Step

 Value Change Handler

 Validations

 Required Field

 Add Loop

 Add Custom Attributes

Available Components

 51

User Interface Workbench 51

 Conditional Field

c) Layout:

 Grid

9) Input Password:

Usage: This component is used to add an input box to accept the password as an input from the
user .

Example:

Supported attributes:

a) Basic:

 Label

 Hide Label

 Value

b) Advanced:

 Value Change Handler

 Validations

 Required Field

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

Available Components

 52

User Interface Workbench 52

10) Input Text:

Usage : This component is used to add an input box to accept text as an input from the user

Example:

Supported attributes:

 Basic

 Label

 Hide Label

 Value

a) Advanced:

 Value Change Handler

 Validations

 Required Field

 Add Loop

 Add Custom Attributes

 Conditional Field

b) Layout:

 Grid

Available Components

 53

User Interface Workbench 53

11) List View:

Usage : This component is used to add a view which groups several items and display s them in
a vertical scrollable list

 Example:

Supported attributes:

a) Basic:

 Label

 urce variable

 Id attribute

b) Advanced:

 Renderer ID

 Pagination

 Indexer

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

Available Components

 54

User Interface Workbench 54

12) Menu:

Usage : This component is used to add an element which display s popup menu with multiple
options relevant to the particular row for easier navigation.

Example:

Supported attributes:

a) Basic:

 Label

 ID

 Options

b) Advanced:

 Enter Menu Launcher

 REST API chain

 Hook functions

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

13) Radio Buttons:

Usage : This component is used to add buttons to let a user select an option from the available
choices.

Example:

Available Components

 55

User Interface Workbench 55

Supported attributes:

a) Basic:

 Label

 Hide Label

 Value:

 Options

b) Advanced:

 Value Change Handler

 Validations

 Required Field

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid:

14) Select:

Usage : This component is used to add a drop down, to allow user to make a choice from the
predefined options.

Example:

Available Components

 56

User Interface Workbench 56

Supported attributes:

a) Basic:

 Label

 Hide Label

 Value

 Select type

 Options

b) Advanced:

 Value Change Handler

 Validations

 Required Field

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

15) Switch:

Usage : This component is used to add a toggle button for binary status such as on/off.

Example:

Supported attributes:

a) Basic:

 Label

 Hide Label

 Value

b) Advanced:

 Value change handler

Available Components

 57

User Interface Workbench 57

 Required field

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

16) Table:

Usage : This component is used to add a view which groups several items and display s them in
row- column fashion.

Example:

Supported attributes:

a) Basic:

 Label

 urce variable

 Id attribute

 Columns

b) Advanced:

 Row renderer

 Pagination

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

Available Components

 58

User Interface Workbench 58

17) Text:

Usage : This component is used to add a simple text.

Example:

Supported attributes:

a) Basic:

b) Advanced:

 Aria label

 Tag type

 Binding urce

 Add formatter

 Add loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

18) Text Area:

Usage : This component is used to add an input box to accept the multi-line text as an input from
user .

Example:

Supported attributes:

a) Basic:

 Label

Available Components

 59

User Interface Workbench 59

 Hide Label

 Value

b) Advanced:

 Enter rows

 Value Change Handler

 Validations

 Required Field

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

19) Train:

Usage : This component is used to add an element for navigation that allows a user to go
between different "steps" i.e. different components. Each step can display information about the
state of the step such as "visited", "unvisited", "disabled".

Example:

Supported attributes:

a) Basic:

 Label

 Value

b) Advanced:

 Selected step

 Value change handler

 Add Loop

 Add Custom Attributes:

 Conditional Field

c) Layout:

Available Components

 60

User Interface Workbench 60

I) Grid

20) Tree View:

Usage : This component is used to add an element to display the hierarchical relationship
between the items of the tree.

Example:

Supported attributes:

a) Basic:

 Label

 urce variable

b) Advanced:

 Renderer ID

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

Available Components

 61

User Interface Workbench 61

B) Controls:

1) Button:

Usage : This component is used to add a call to action to the page which can be configured to perform
various actions on its click.

Example:

 Supported Attributes:

 a) Basic:

 label

 b) Advanced:

 Icons

 Select Class Type

 Select Type

 Rest API Chain

 Hook Function

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

2) Button Set:

Usage: Basically button set is a group of button which can be used as radio button or checkbox button. In
case of single selection it act as radio button and in case of multiple selection it act as checkbox set
button

Example:

a) Radio button set

Available Components

 62

User Interface Workbench 62

b) Checkbox button set

Supported Attributes:

a) Basic:

 ID: It accepts the same value as Label

 Value

 Select Type:

 1) Buttons Set One: Choose this to use it as radio button set

 2) Button Set Many: Choose this to use it a checkbox button set

 Options

b) Advanced:

 Value Change Handler

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

3) Container:

Usage : This component is used to provide a wrapper or group for form elements to apply a common
behavior to them. e.g. display / hide of buttons. An element is always placed inside the container start
element and container end element.

1. On Dropping the container element at the desired position on form area, a panel will open

on the right side

2. User can select the type, fill the required fields and click confirm.

Note: Container can al be used inside container.

Available Components

 63

User Interface Workbench 63

Supported Attributes:

a) Basic:

 Select Type Of Container

b) Advanced:

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

4) Component Loader:

Usage: Component Loader is used to load already created component or partial in current component.

Supported Attributes:

a) Advanced:

 Select Type:

 a) Component

 1) Select Type

 i) Framework Elements: To use Framework Components.

 Refer to framework components section for more detail.

ii) Transaction: To load transaction type of component. Refer to

Transaction component section.

III) Single : To load normal component.

 b) Partial:

 Add Loop:

 Add Custom Attributes:

 Conditional Field:

b) Layout:

 Grid:

Available Components

 64

User Interface Workbench 64

C) Framework Component:

These components are predefined component that can be plugged with the user ’s created
component to give specific functionality. Different framework component:

1) Account Input:

Usage: Component which provides account selection that is fetched from current logged in user
or custom URL

Example:

Supported Attributes:

 a) Basic:

 Label

 Value

b) Advanced:

 Enter Type: These values will passed to ‘type’ key in params for account input.

1. balance

2. address

3. nodeValue

4. loans

 Add Loop:

 Add Custom Attributes:

 Conditional Field:

c) Layout:

 Grid

Available Components

 65

User Interface Workbench 65

2) Amount Input:

Usage : This component is used to accept amount in an input box. The component gives currency
selection and entered amount is formatted with respect to selected currency.

Example:

Supported Attributes:

 a) Basic:

 Label

 Value

b) Advanced:

 Enter Currency Variable: To store selected currency value.

 Required

 Currency List Required: Whether to display currency list. In case currency list is
required, user has to provide URL to fetch currency list or provide a function called
Currency Parser which returns the currency list .

 Currency URL: URL for Fetching currency.

 Currency Parser: Custom function which returns currency list that can be declared in init
function

 Enter Root ID: Root id which will be passed in params of amount input.

 Enter Root Class: Root class which will be passed in params of amount input.

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

Available Components

 66

User Interface Workbench 66

3) Bank Look up:

Usage : This component is used to provide bank look up on the basis of IFSC Code, state, city or branch
name.

Example

Supported Attributes:

 a) Basic:

 Label

b) Advanced:

 Clearing Code Type

 II)Account Type

 Region

 Network Code

 Add Loop

 Conditional Field

c) Layout:

 Grid

Available Components

 67

User Interface Workbench 67

4) Help Panel:

Usage: This component is used to display related information about the current component .

Example:

Supported Attributes:

 a) Basic:

 Partial Name: Name of the partial which will be created inside
ChannelPath/partials/help/

b) Advanced:

 Enter Heading

Button Name

Available Components

 68

User Interface Workbench 68

 Image urce: Path of image inside channelPath/images/

 Enter Description

 Enter Button Name

 Rest API Chain: Rest to be fired on button click

 Hook Function: Write action to be performed on button click

 Add Loop

 Conditional Field

c) Layout:

 Grid

5) Navigation Bar:

Usage: This component is used to provide tab based page Navigation, where each tab item / name will
display specific view.

Example:

Supported Attributes:

 a) Basic:

 Label:

 Tabs: Can be provided externally or custom just like select box option. In case user is
not familiar with how to provide option, refer Option section in Available attributes.

b) Advanced:

Available Components

 69

User Interface Workbench 69

 UI Options:

 a) Icon Available

 b)Default option

 c) Menu Float

 d) Full Width

 E) Edge

 Navigation Bar Description

 Add Loop

 VI) Conditional Field

c) Layout:

 Grid

6) Page Section:

Usage: This component is used to provide basic layout structure and styling for every page / screen.

Note: All the form elements must be present inside this container.

Example: In the example below, Page Section is added and header is optional. The other form elements
can al be added via Partial.

Page Section Header

Available Components

 70

User Interface Workbench 70

Supported Attributes:

 a) Basic:

 Label

 Format label

 Hide Page Heading: Switch to active mode to hide the page section heading.

b) Advanced:

 Add Loop

 Conditional Field

c) Layout:

 Grid

7) Row Control:

This component is used to display label and its corresponding value in structure supported by OBDX

framework

Example:.

Supported Attributes:

 a) Basic:

 Label

 Format label

 Value

b) Advanced:

 Add Formatter

 Add Loop

 Conditional Field

c) Layout:

 Grid

Available Components

 71

User Interface Workbench 71

D) Visualizations

 1) Chart: There are three types of chart that can be drawn with the help of tool:

 a) Pie Chart,

b) Bar Chart,

c) Line Chart. For more information about each chart type, visit jet.us.oracle.com.

Example:

Supported Attributes:

a) Advanced:

 Series

 Groups

 Add loop

 Add Custom Attributes

 Conditional Field

Available Components

 72

User Interface Workbench 72

b) Layout:

 Grid

 2) Timeline:

Usage: This component is used to display the timeline component. To provide values to timeline
component use Add Custom Attribute (refer section Add Custom attribute in Available Attributes).

 Example:

Supported Attributes:

 a) Basic:

 Label

b) Advanced:

 Add Loop

 Add Custom Attributes

 Conditional Field

c) Layout:

 Grid

Available Attributes

 73

User Interface Workbench 73

11. Available Attributes

11.1 Label:

 Description: This attribute is a mandatory element and is used to display the label of the element on
the screen.

Component to accept the input: Input Text

Example: User has an input field to provide account name as shown in the image.

 Usage: Enter the label as “Account Name” in the input text field as shown in the image.

11.1.1 Hide Label:

Description: This attribute is used to hide the label of the element on the screen.

Component to accept the input: Switch

Example: In the below example, User can apply this component to use checkboxes that selects
rows in a table without displaying the label.

Available Attributes

 74

User Interface Workbench 74

Usage: Enable the switch on as shown in the image. It will disable the label of the element.

11.1.2 Format Label:

Description: This attribute is used when user wants to change the label or text dynamically.

Components to accept the input: Switch and Input text

If user enabled the switch, it will display two input texts.

1. Add variables to label

2. Enter variable’s mapping

Available Attributes

 75

User Interface Workbench 75

Example: In the example below, user name of logged in user and other login details are display ed.
User name and Login details will be dynamic. (“Welcome <user name>” and “Last Login <login
Details>”) and will change based on the current user and time.

Usage: Enter the label of an element which is static (e.g. “Welcome") in Label attribute,

Then enable the “Format Label” switch. It will display two input texts.

Available Attributes

 76

User Interface Workbench 76

11.1.3 Add variables to label:

When user enables the switch, the label user entered in Label attribute will be pre-filled in this input
field as shown in the image.

Now user needs a key to hold the value, which will change dynamically. In the example below, key
name is user name. User will have to add this key name (user name) after the label (Welcome) in
this field.

To add a key, write the key name surrounded by curly braces.

Available Attributes

 77

User Interface Workbench 77

11.1.4 Enter variables mapping:

User will have to map this key to a variable, which will hold the dynamic value. In the example below,
the value is stored in a variable called as user _name.

 To map the key to the variable, write the key name, colon (:) and variable name.

User can have multiple keys and values as shown in the image.

Available Attributes

 78

User Interface Workbench 78

11.2 Value:

Description: This attribute is used to store the value of an element. This value can be display ed on
the screen or used for further processing, such as sending to server.

Components to accept the input: Select Box

 This select box has five options

a. Observable variable

b. Rest properties

c. Inside table

d. Inside List/tree view

e. Inside loop

Example: In the example below, User has a form to request a statement account for a given time
period. In the form, account number component and two date pickers, From date and To date are
available. User will send the values of From date and To date field to the server to fetch the details.

Available Attributes

 79

User Interface Workbench 79

Usage:

User can store the values of these fields using five different ways. by selecting the type based on
requirement.

a. Observable variable

In some scenarios, the data fetched from the REST API cannot be directly shown on the
screen. Similarly the data submitted by the user cannot be directly saved on the server. It
needs processing. to process this data, sometimes the user needs to store it in another
variable. Therefore, if user wants to store the value of an element into a variable which is
defined by you, this option should be selected.

In the example below, user has a variable From Date , storing the value of From Date field.

Select the option as “Observable variable”. After selection, it will display an input field named
as variable name.

Enter this variable name (fromDate) into “variable name” field as display ed in the image
below.

b. Rest properties:

 Rest API can be used for multiple requirements.

1. GET : To fetch data from the server.

2. POST : To save data on the server.

3. PUT : To modify data on the server

Available Attributes

 80

User Interface Workbench 80

4. DELETE : To delete data from the server.

When user selects the option “Rest properties”, it will display a select box named as “Select
REST API”.

Select REST API: This select box display s all the REST APIs that user has selected in Step
3 i.e. REST API Selection as shown in the below image.

When user selects a REST API from this select box, it will display another select box named
as “Select Options”.

Select Options: This select box has two options as shown in the below image.

Available Attributes

 81

User Interface Workbench 81

 Required and Optional Parameters :

To understand what is “Required or Optional Parameters” refer to Required and optional
parameters section.

When user will select” Required or Optional Parameters” option, it will display two different
select boxes.

a. Required Parameters: This select box will display all the required parameters of the selected
REST API.

b. Optional Parameters: This select box will display all the optional parameters of the selected
REST API.

Example: User has a REST API “/accessPoint/{accessPointId} get v1”. In this REST API,
accessPointId is a required parameter and user wants this parameter to be filled as in Input
and wants to map this property to input text.

Usage:

a. Select “REST Properties”.

b. Select REST API i.e. / accessPoint/{accessPointId} get v1

c. Select Required or Optional Parameters

d. Map the accessPointId to the input text.

Available Attributes

 82

User Interface Workbench 82

 Payload Properties:

When user select “Payload Properties”, it will display a select box named as “Properties”.

Properties: This select box will display all the payload properties of the selected REST API.

 As discussed above, REST API can be used for multiple request types like GET, POST OR PUT.

In the case of GET request, server sends the data to the user . in this case this response data is
considered as payload. All the payload properties listed in this select box will store the server
response of that selected REST API. User can map this property to the elements, which display
s the data. For example, Row control, Text.

In the of POST or PUT request, user sends the data to the server. in this case this request data
is considered as payload. All the payload properties listed in this select box will store the data
entered by the user for that selected REST API. User can map these payload properties to the
elements, which accepts the input, and send it to the server.

Available Attributes

 83

User Interface Workbench 83

In the above example, there are two components.

1. Row Control to display the account number

In this case, account number is fetched from the server.

a. Select “REST Properties”.

b. Select REST API i.e. /accounts/demandDeposits/{accoundId} get v1

c. Select Payload Property

d. This is the GET request Payload Property will store the response came from the
server, hence select the required property from payload i.e.
demandDepositeAccountDTO.id.display value and map it to the row control.

Available Attributes

 84

User Interface Workbench 84

2. Two date pickers to store the dates.

In this case, dates need to be sent to the server.

a. Select “REST Properties”.

b. Select REST API i.e. /accounts/demandDeposits/{accoundId} post v1

c. Select Payload Property

d. This is the POST request Payload Property will store the input and this payload will
be sent to the sever, select the required property from payload i.e.
demandDepositeAccountDTO.id.display value and map it to the date pickers.

Available Attributes

 85

User Interface Workbench 85

 Inside table:

If element is inside the table, then select this option.

Example: In the below image, user has Invoice list table as display . all the components, which
are used, are inside the table such as checkbox, input box etc. select this option.

When user will select “Inside table” option, it will display an input box to add a variable name as
shown in the below image. This variable is nothing but one of the keys available in the data urce
object given to the table. This variable can be used to display the data or to store the data.

Example: The dataurce object looks like this :

 dataurce[0] {

 counterPartyName : “OBDX_COUNTER_PARTY”,

 invoiceNo :”BULKFUV0126”(this is string)

 comment: user _comment(this is variable)

}

Note: Dataurce is an array of objects. The object shown above is just one object for the first row of
the table. Data urce will have an object for every row. That’s why it is written as dataurce[0] i.e. first
object in an array.

Available Attributes

 86

User Interface Workbench 86

Let’s consider two cases here:

1. Invoice No:

This field is display ing the data. Now user wants to display the invoice BULKFUV0126. As
user can see in data urce object written above, the key, which stores invoice
number(BULKFUV0126), is “invoiceNo”. user will enter this key as a variable name for this
field.

2. Comments:

This field is accepting the user comments, i.e. it is storing the data entered by the user . Use
rwill need a variable to store the data, which is user _comment variable. As user can see in
data urce object written above, the key, which has a reference to the variable(user
_comment) is “comment”. user will enter this key as a variable name for this field.

Available Attributes

 87

User Interface Workbench 87

 Inside List/tree view :

If element is inside the list or tree view, then select this option. This is similar to the table. User
will have the data urce having all the objects. User will write the key name into the variable name
for their respective field.

 Inside loop:

Refer “Add loop” attribute to understand what is loop.

If the element is inside the loop, user will select this option.

 referring to the same example of add loop attribute.

In this example, there are three fields: name, city and mobile number. They are inside the loop.
for these elements user will select “Inside loop” as value.

The objective is as follows:.

user _data = [{name: “James Smith”, city: “New York”, mobileNo: 3454654},

 {name: “Christopher Robin”, city: “Manhattan”, mobileNo:4758945},

 {name: “William Turner”, city: “London”, mobileNo:7857694}];

For example, user is adding the first text element, which display s the name. User will select an
option as “Inside loop”.

User will enter the key, which is storing the name (James Smith, Christopher Robin and William
Turner) of every object. That key is “name”. enter this “name” key in variable name field as
shown in the image below.

Available Attributes

 88

User Interface Workbench 88

Similar for city and mobile number.

11.3 Options:

Description: This attribute is used for all the components, which enables the user to select one
or more options. For example, select box, radio buttons, checkboxes etc.

Component used to accept the input: Collapsible element, Button set and Input texts.

When user clicks on Options, it will expand. There are two ways to add the options.

a. External

b. Custom

Available Attributes

 89

User Interface Workbench 89

Example: User has a select box, which shows multiple options like Current month, Previous
month as shown in the below image.

Usage: User can add these options using the following two ways

a. External

In this type, if user has options to be displayed on the screen which are getting fetched from
a REST API, then select the type as external.

Available Attributes

 90

User Interface Workbench 90

Under this type, there are three input fields.

1) Variable name: This field stores the data fetched from REST API. It is mandatory to have the

data in this variable in value=>label format. In case the data is not in this format, then

convert it to the required format and enter that variable name in this field.

Example: The variable name is time_range.

This variable has the following data which is fetched from REST API.

time_range = [{ label : “Current Month”, value :”CM”}, { label : “Previous Month”, value :”PM”},
{ label : “Previous Quarter”, value :”PQ”}, { label : “Date Range”, value :”DR”}]

2) Value key: As mentioned in point (1), value from variable name represents the actual data

that will be used for further processing and is to be entered in this field.

Here time_range is an array having multiple objects.

In this object {label:”Current Month”, value:”CM”} , value “CM” is going to be processed.

Hence in this case value key will be, “value”.

3) Label Key: As mentioned in point (1) above, label from variable name represents the

description that needs to be display ed against an option of an input field such as select box,

radio button set etc. This label is to be entered in this field.

Available Attributes

 91

User Interface Workbench 91

In this object {label:”Current Month”, value:”CM”} , label “Current Month “is going to be
display ed on screen,

 in this case label key will be, “label”.

Note : User can name this value key and label key as per their choice i.e. {label:”Current Month”,
value:”CM”} can be written as {name:”Current Month”, id:”CM”}. In this case value key will be “id”, and
label key will be “name”.

b. Custom

In this type, if user wants to add the options manually, i.e. for data not fetched from any
REST API, then select the type custom.

Available Attributes

 92

User Interface Workbench 92

Under this type, there are two input fields.

1) Enter Value: This field represents the actual data that will be used for further processing. If

user enters the value in double quotes, it will be processed as string. For special cases such

as Boolean where the value is true/false do not enter the value in double quotes.

In the below image, “CM”, “PM”,”PQ” are the values.

2) Enter Label: This field represents the description that needs to be display ed against an

option of an input field such as select box, radio button set, etc.

 as shown in the image below, Current Month, Previous Month and Previous Quarter are the
labels.

Available Attributes

 93

User Interface Workbench 93

User can add more options using the “Add Options” link highlighted in green below.

User can delete the option using the icon highlighted in red below

11.4 Value change handler:

Description: This attribute is used to handle the events, when the value of an element is changed.

Components to accept the input: Switch, select box, and code editor

Available Attributes

 94

User Interface Workbench 94

When user enables the switch, it will display an input box and a button as shown in the below image.

1. REST API Chain: To understand REST chaining, please refer REST API Chaining section. This
select box lists all the REST API chaining that user has created in step four i.e. REST API
Configuration. From this select box, user can select REST API chain that he wants to fire when
the value of an element is changed.

2. Hook function: There is a button named as “Open Editor”. When user clicks on this button, it will
open a code editor as shown in the below image. In this editor, user can write the code to be
executed when the value of an element is changed.

To understand more about editor, refer Open Editor of hook function section.

Available Attributes

 95

User Interface Workbench 95

Example:

1. User has two select box options

a. Buyer Name: This select box lists all available buyer names.

b. Name of Program: When user selects a buyer name, this select box will lists available
programs specific to the selected buyer.

Available Attributes

 96

User Interface Workbench 96

In above example, user will need to fire a REST API to fetch the available programs of the selected
buyer. It means the user needs to perform an operation when the value of buyer field changes. In
such scenarios, this attribute is used.

Usage: Enable the “value change handler” switch.

Select the REST API that user needs to fire when the value of buyer field changes as shown in the
below image.

Now if user clicks on the “Open Editor” button, it will open the code editor.

A default code is already present in the window generated by the tool. When user selects a REST
API, the tool generates the required code to execute that REST API. However, in some cases, there
is a need to do some additional operation on the data fetched from the server. Therefore, for this
purpose, there is a support for code editor. In such scenarios, use the response variable(highlighted
in red circle in the above image) for further processing.

Available Attributes

 97

User Interface Workbench 97

 whenever the value of buyer name field changes, it will execute the block of code written inside the

editor.

1) User has a form and wants to give an option to use this form as a template. If the user says

yes, then an input text field is displayed to accept the template name as shown in the image.

Usage: In this example, user will need a variable to handle this case, say “isTemplate”. Initially this
variable will have a value set as false (Boolean). it will hide “Template Name” input field. But when
the user will select “Yes” option, its value will change to true (Boolean) and it will display the input
field “Template Name”.

Enable the “value change handler” switch.

As user doesn’t need to fire any REST API, no REST API is to be selected.

Click on the “Open Editor” button, and write code inside the editor as shown in the below image.

newValue represents the new value of the field. If user selects “Yes”, newValue will be “Yes” and
variable will be true. If user selects “No”, newValue will be “No” and variable will be false. whenever
the value of radio button changes, it will execute this block of code.

Available Attributes

 98

User Interface Workbench 98

Note: As there is no REST API selected, there will be no auto-generated code.

11.5 Validations:

Description: This attribute is used to add UI level validations for an element.

Components to accept the input: Switch, Radio buttons, Select box

When user will enable this switch, it will display two radio buttons as shown in the below image.

1. Predefined: There are some validations which are common such as mobile number must have 10
digits. such validations are already defined by OBDX framework.

Available Attributes

 99

User Interface Workbench 99

When user selects this option, it will display a select box named as “Select Validations” as
shown in the below image. This select box lists all the predefined validations, which are available.
For example, mobile number, address, email etc.

2. Custom: There are some validations which are element specific, for example, some element must
have a specific length or special characters etc. Select this option to customize validations.

When user selects this option, it displays a select box named as “Select Validations” as shown in
the below image. This select box lists all the custom validation options such as “alphabets with
space”, “alphabets with some special characters” etc.

Available Attributes

 100

User Interface Workbench 100

Below the select box, there is an input box named as “Enter error message” and a switch for
“Length validation” as shown in the below image.

Available Attributes

 101

User Interface Workbench 101

Enter error message: Enter the error message that should be tdisplay on the screen when the
validation fails.

Length validation: Enabled this switch, if there is a length validation. When user will enable this
switch, it will display two input boxes for minimum length and maximum length.

Example: User has two fields, which needs some validations.

1. Input field to accept the phone number:

Validation for phone number is “Enter 10 or fewer characters, not more.” As shown
in the below image.

Usage: This validation is available in predefined validation.

After selecting the validation, select the option, “mobile_no” as shown in the below
image.

2. Input field to set the password:

Validation for password is “Password must have minimum 8 and maximum 12
characters. It can have special characters”.

Example of Error Message can be ‘Please enter a valid password.

Available Attributes

 102

User Interface Workbench 102

Usage: This validation is specific to password field, and hence is not available in
predefined validation. The user needs to customize the validation. Therefore, user
will enable the validation switch and select custom validation.

From the select box, user needs to select the option,
“APHABETS_WITH_ME_SPECIAL”.

Enter the error message example ‘password is not valid’ into the input box.

Enable the switch and enter the minimum length and maximum length in respective
input fields as shown in the below image.

Available Attributes

 103

User Interface Workbench 103

11.6 Required field:

Description: This attribute is used to make the field mandatory, i.e. user cannot leave the field
empty.

Components to accept the input: Switch

In the below Example, User has a date picker and wants to make it mandatory i.e. user must select
the date otherwise an error is will be display ed.

Usage: Enable the switch as shown in the below image. This will make the date picker field
mandatory.

11.7 Add Loop:

Description: This attribute is used to display the same element multiple times with different values.

Components to accept the input: Switch and input text.

When user enables the switch, it display s an input text named as “Looping variable name” as shown
in the below image.

Available Attributes

 104

User Interface Workbench 104

In the below example, User has a template, which display s the name, city and mobile number of the
three user s.

There are two ways in which this can be achieved:

1. Writing the template 3 times for three user s which is quite cumbersome and will produce
unnecessary redundancy in code.

2. Writing the template once, and using it 3 times for three user s which can be achieved using add
loop attribute

Usage: Assume user has a normal container (For container refer Container element) and all the
fields(name, city and mobile number) are wrapped inside this container.

The user details are stored in the variable “user _data”:

user _data = [{name: “James Smith”, city: “New York”, mobileNo: 3454654},

 {name: “Christopher Robin”, city: “Manhattan”, mobileNo:4758945},

 {name: “William Turner”, city: “London”, mobileNo:7857694}];

Note: user _data is an array of objects. Each object represents one user . In this array, there are
three objects length of this variable is three. Hence the container will repeat three times.

To enable the switch of add loop attribute, and user will enter user _data variable name in the
“Looping variable name” input field as shown in the below image.

Available Attributes

 105

User Interface Workbench 105

To know how to add the elements which are inside the looping variable, (name, city, mobile number)
refer to Inside loop attribute section.

Note: In this example, looping variable has been added to the container. But user can add the
looping variable to any element using the same process (For example, input text, anchor tag etc.) In
that case, input text and anchor tag will be repeated as many times as the length defined by the
looping variable.

11.8 Add Custom Attributes:

Description: This attribute is used to add custom attribute, i.e. attribute not supported by the tool.

Components to accept the input: Switch, Input box

When user enables the switch, it will display two input boxes and two switches as shown in the
image. User can add more attributes using the link “Add attribute” highlighted in green and can
delete the attribute using the icon highlighted in red.

Available Attributes

 106

User Interface Workbench 106

a. Input boxes :

1. Enter attribute: This field represents the attribute name.

2. Enter value: This field represents the attribute value. It supports both strings and
variables. For strings use double quotes(“”).

b. Switch:

Attributes support two types of bindings : one way binding and two way binding. To
understand one way binding and two way binding refer:
https://knockoutjs.com/documentation/value-binding.html

1. Use colon: This option is only valid if the user is using one way binding to add attributes
to the JET components, for example, oj-input-text, oj-select-one etc. Use this field as
some of the JET attributes need colon before attribute name. If this switch is enabled,
attribute name will start with colon. Refer JET site to know whether the attribute needs
colon or not. http://jet.us.oracle.com/6.1.0/jetCookbook.html

2. Use curly braces: If this switch is enabled, attribute value will be surrounded by curly
braces.

For one way binding, use square brackets.

For two way binding, use curly brackets.

Example: User can use this attribute in two cases.

1. User has a list and wants to refresh it whenever the data changes. To refresh the list, its ID
attribute is required. Tool generates ID for every element but it is random and will change every
time the component is edited. Therefore, this ID cannot be used to refresh the list. Hence user
can add new id attribute. It will replace the id generated by the tool. In the below example,
“listview” is taken as an attribute.

Usage: Enable the switch.

Enter the attribute name in “Enter Attribute” field. Attribute name is “id”.

Enter the attribute value in “Enter Value” field. Attribute value is “listview”. As it is a simple string, use
double quotes as shown in the image below.

This id attribute needs colon. enable the switch.

This attribute needs one way binding, it needs square brackets. Hence do not enable the switch as
shown in the image below.

https://knockoutjs.com/documentation/value-binding.html
http://jet.us.oracle.com/6.1.0/jetCookbook.html

Available Attributes

 107

User Interface Workbench 107

2. A single element can support many attributes and it is not feasible to add each attribute.
Therefore, there will be some attributes, which will not be available inside the tool user can add
such attributes using this custom attribute.

Note: When user add attributes to the Non-JET components, some attributes goes inside attr
attribute. Refer https://knockoutjs.com/documentation/attr-binding.html

 In that case, Attribute Name will be attr and Attribute value will be actual attribute user want to add.

Assume user want to add id attribute to an Image, i.e. html tag. In this case, id attribute goes
inside attr attribute. Therefore, Attribute Name will be attr and Attribute value will be id: fb_image as
shown in the image below.

https://knockoutjs.com/documentation/attr-binding.html

Available Attributes

 108

User Interface Workbench 108

11.9 Conditional Field:

Description: This attribute is used to display an element only if given condition gets satisfied.

Components to accept the input: switch, select box, and input text.

When user enable the switch, it will display a select box and an input text as shown in the image
below.

1. Controlling property: This select box lists name of the all the elements which user have added. If
user want to display element based on the value of a different element, then user can use all these
elements available in the select box to write a condition.

2. Conditional Expression: This field accepts the condition that needs to be satisfied.

Example: User have a form to transfer money from account to another account. That form has
select box to select a payee, account input to select an account from which user want to transfer
the money, input field which accepts the amount and radio buttons which accepts the date i.e. when
to transfer the money as shown in the image.

Available Attributes

 109

User Interface Workbench 109

This radio button (Transfer when)has two options.

a. Now : If user wants to transfer the money today only, he will select this option.

b. Later: If user wants to transfer the money on a different date, he will select this option.

Now when user selects “Later” option, there should be a date picker to accept the date as shown in
the image below.

 in this case user have to display the date picker “Transfer date”, if user selects “Later” option. this
is condition.

Usage:

Assuming user has already added the radio buttons, and amount field.

Now when user will add “Transfer date” date picker, user will enable the conditional field switch. It
will display a select box (Controlling property) and input text (Conditional Expression).

3. Controlling property : This select box will list name of all the elements. Therefore, it will display
name of radio buttons (“Transfer when”)and amount(“Amount”) field as shown in the image below.

Available Attributes

 110

User Interface Workbench 110

If date picker based on the value of radio button is to be display ed, user will select the “Transfer
When”.

4. Conditional Expression: User will have to add the condition. There is ahelp text written just below
this input field.

“Please use x1,x2 as placeholder for selected controlling field to write expression”.

It implies when the condition is written, the name of an element that user have selected from
Controlling Property, instead refer them as x1,x2 and on is not mentioned.

Therefore, in this example, user will write “Transfer When” as x1.

 condition will be x1 === “Later”.

Write this condition in the input field as shown in the image below.

Note: metimes, condition is a combination of multiple elements. In that case, user can select multiple
elements from Controlling property. For example, user wants to display the date picker, only if user
selects later and amount entered is greater than 100INR.Then user can select both “Transfer when”
and “Amount”. And condition will be x1===”Later” && x2 > 100 as shown in the image below.

Available Attributes

 111

User Interface Workbench 111

5. Condition cannot always be depend on element’s value that user have added. For example, user
has only one condition, display the date picker in case of large screen only. This condition is not
based on any element that user have added. in such cases user can directly write condition in
Conditional expression field. As there is no controlling property, there will be no x1, x2 placeholder.

 condition will be “$baseModel.large()” ($baseModel.large() returns true if it is large screen) as
shown in the image below.

6. With controlling properties, user can add me different condition al. For example, user has a
condition, which is a combination of all the three conditions, which are discussed above.

 condition will be x1===”Later” && x2 > 100 && $baseModel.large() as shown in the image below.

Available Attributes

 112

User Interface Workbench 112

11.10 Grid:

The grid section is used to design grid structure supported by Oracle JET. Refer
http://jet.us.oracle.com/jetCookbook.html?component=grid&demo=gridresponsive to learn how to use
grid structure.

Usage: By default tools support Oracle JET oj-form-layout (refer
http://jet.us.oracle.com/jetCookbook.html?component=ojFormLayout&demo=formverticalofl).

The default layout will be the one which user selected on Layout Selection page (refer Layout
Selection Page). But there are limitations of oj-form-layout. Not every element is supported by oj-
form-layout and not every structure can be created by oj-form-layout, hence grid layout can be used
to relve this problem. Use of grid is pretty simple.

Creating grid Layout: Select grid option to enable grid layout.

a. Flex :

This property provide new flex to the selected element. And the current element will be wrapped as
flex-item in this Flex. But in case user doesn’t select this option and previous element has Flex true
than this element will be added as flex item in the previous element. It’s okay if this all seems little
complex, we will clear this in upcoming examples.

b. Flex Item Label Class:

In case of form element like input box, select box, etc. this property is used to decide the width and
position of label. In case form element does not have label or user does not want to display the label,
keep the switch off.

c. Flex item label Class:

This field is used to get configuration for width and position of current element.

Examples:

Case:

a) Grid: true, flex : true; Flex item label class: true,

Label Class: ‘oj-lg-3 oj-md-4 oj-sm-12’, Flex Item Class: ‘oj-lg-4 oj-md-5 oj-sm-12’

b) Grid: true, flex: false, previous element flex: true, Flex item label class: true

Label Class: ‘oj-lg-2 oj-md-4 oj-sm-12’, Flex Item Class: ‘oj-lg-3 oj-md-5 oj-sm-12’

http://jet.us.oracle.com/jetCookbook.html?component=grid&demo=gridresponsive
http://jet.us.oracle.com/jetCookbook.html?component=ojFormLayout&demo=formverticalofl

Available Attributes

 113

User Interface Workbench 113

c) Grid: true, flex: true, Flex item label class: false

Flex Item Class: ‘oj-lg-3 oj-md-5 oj-sm-12’

Open Editor of hook function: Whatever is written inside this code editor goes inside the function.

Function has three parts:

function function_name(function_parameters) {

 Function_body

}

1. function_name: Function name will be generated by the tool

2. function_parameters:

a. In case of JET components, which support value attribute for example, oj-input-text, oj-select-
one etc. function parameter will be newValue as shown in the image below. newValue stores
a new value of the field. To know more about JET components refer
http://jet.us.oracle.com/6.1.0/jetCookbook.html.

b. In case of JET components, which do not support value attribute, for example, oj-button, oj-
menu, oj-file-picker etc. function parameter will be event and data as shown in the image
below.

http://jet.us.oracle.com/6.1.0/jetCookbook.html

Available Attributes

 114

User Interface Workbench 114

c. In case of Non JET components i.e. pure html components, for example, anchor tag function
parameters will be data and event as shown in the image below.

1. function_body: User can write own code inside this body. If user select any REST
API from REST API Chain select box, it will have some auto-generated code.
Otherwise, it will be an empty body.

Available Attributes

 115

User Interface Workbench 115

There are two buttons.

1. Save Button: It will save all the code user has written.

2. Cancel Button: It will close the code editor without saving anything user has written after
opening the code editor.

11.11 Select anchor type:

Description: This attribute is used to determine the type of anchor tag.

Components to accept the input: Select box

This select box has three options as shown in the image below.

1. Text

2. Icon

3. Image

1. Text: This option is used for simple text. When user select “Text” option, it shows “Value”
select box as shown in the image below.

Available Attributes

 116

User Interface Workbench 116

2. Icon: This option is used for icons. When user select “Icon” option, it shows an input box
named as “Icon class Name” as shown in the image below. This input text accepts an
icon class.

3. Image: This option is used for image. When user select “Image” option, it shows an input
box named as “Enter Image Path” as shown in the image below. This input text accepts
image path where it is located.

Example: Now anchor tag can be used with simple text, icon or image.

1. Text : User have a simple text “Forgot User name” that user want to use as a link, as
shown in the image below highlighted in red oval.

Available Attributes

 117

User Interface Workbench 117

Usage: In this type, select this option as shown in the image below.

As user can see in above image, there is small information text, “Please use value
option if anchor text is not fetched from ReurceBundle”.

It means, if text is not a simple string, i.e. it is fetched from the server or stored in
variable then user can use value option available just below the text.

To understand value attribute refer value attribute section.

In this example, “Forgot User name” it is a simple string, do not select anything from
“Value” select box.

2. Icon: User have an icon (>) that user want to use as a link, as shown in the image below
highlighted in red oval.

Usage: In this type, select this option as shown in the image below.

It will display an input box to enter the class name for an icon.

For this icon, class name is “icons icon-arrow-right”, enter it in the input box as shown in
the image below.

Available Attributes

 118

User Interface Workbench 118

3. Image: User have an image that user want to use as a link, as shown in the image
below highlighted in red oval.

Usage: In this type, select this option as shown in the image below.

It will display an input box to enter the path for an image.

For this image, path is “dashboard/quick-access/ transfer-money”, enter it in the input box
as shown in the image below.

Note: Use single quotes if path is of type string.

 if “dashboard/quick-access” is string but “transfer-money” is stored in image variable.
Then path will be ‘dashboard/quick-access’ + image

Available Attributes

 119

User Interface Workbench 119

11.12 Add formatter:

Description: This attribute is used to add formatter to format a date, currency or number.

Components to accept the input: Switch, Select box and Input box

When user enables this switch, it will display a select box named as “Select Formatter type”.

This select box has three options:

a) Format Date: To format a date

b) Format Currency: To format currency as per the standard format for a particular currency.

Available Attributes

 120

User Interface Workbench 120

When user selects this option, it will display an input box named as “Enter Currency Variable”. Add
variable name which has currency value.

c) Format Number: To format a number into percent value.

When user selects this option, it will display three input boxes as shown in the image below

a) Style: This field is used to specify the style which should be used for formatting the number, like

percent or decimal

b) Min Fraction Digit: This field is used to specify the minimum digits permissible after the decimal.

c) Max Fraction Digit: This field is used to specify the maximum digits permissible after the decimal.

Example:

1) Format Date: User has a date like “2017-10-03T19:43:45.695Z”. And user wants to format it

using dateTimeStampFormat, which will be “04 Oct 2017 01:13:45 AM”.

Usage: Enable the switch, and select type “Format Date”

2) Format Currency: User has an amount “2,502.25” and user want to format it using currency

“GBP”, which will be “£2,502.25”.

Available Attributes

 121

User Interface Workbench 121

Usage: Enable the switch.

Here what user write in “Enter Currency Variable” input box depends on what user select in
value attribute. Refer value attribute section

If user selects “Observable variable / Inside Table/ Inside List/TreeView”, then user will write
variable name in which this currency has been stored.

Assume variable name is “tempCurrency”. Its value is “GBP”.

If user select “Rest Properties”, then user will write “currency” word as shown in the image
below.

3) Format Number: User has a number “63.2512” and want to format it with percentage.

Minimum fraction digit is 1, and maximum is 2. It will be 63.25%.

Usage: Enable the switch, select “Format Number” type. Enter style as percent (do not use

single quotes), and fractions digits as shown in the image below.

Available Attributes

 122

User Interface Workbench 122

Available Attributes

 123

User Interface Workbench 123

11.13 Select Size:

Description: This attribute is used to specify the size of the avatar.

Components to accept the input: Select box

This select box has seven options:

1. XXS : Double extra small

2. XS: Extra small

3. SM: Small

4. MD: Medium

5. LG: Large

6. XL: Extra large

7. XXL: Double extra large

Example: User has an avatar, and user wants to specify the size as extra small. To know more about
avatar size refer http://jet.us.oracle.com/6.1.0/jetCookbook.html?component=avatar&demo=basic

Usage: Select XS option as shown in the image below.

http://jet.us.oracle.com/6.1.0/jetCookbook.html?component=avatar&demo=basic

Available Attributes

 124

User Interface Workbench 124

11.14 Enter Image Path:

Description: This attribute is used to specify the path for the image of the avatar. Image will be
rendered as a background image.

Components to accept the input: Input Text

Example: User wants to add an image in avatar located at “composites/avatar-image.jpg”.

Usage: Enter path “composites/avatar-image.jpg” in an input box as shown in the image below.

Note: Use single quotes if path is of type string

Available Attributes

 125

User Interface Workbench 125

11.15 Enter Initials:

Description: This attribute is used to specify the initials of the avatar. It will only be displayed if the
source (src) attribute i.e. path of an image is null or not specified.

Components to accept the input: Input Text

Example: User wants the initials as “AB” in avatar.

Usage: Enter the initials “AB” in an input box as shown in the image below.

Note: Use single quotes if initials are of type string.

11.16 Select Type:

Description: This attribute is used to specify whether to allow single or multiple option selection. By
default, it will be single selection.

Components to accept the input: Buttonset

For Select:

For ComboBox:

Available Attributes

 126

User Interface Workbench 126

There are two types of button available.

1. Select/ComboBox One : For single select

2. Select/ComboBox Many : For multi select

By default, “Select/ComboBox One” will be selected.

Example:

1. For Select Component:

User wants multi select drop down as shown in the image below.

Usage: Select type “Select Many” as shown in the image below.

2. For ComboBox Component:

User wants multi select combobox as shown in the image below.

Usage: Select type “ComboBox Many” as shown in the image below.

Available Attributes

 127

User Interface Workbench 127

11.17 Selection Mode:

Description: This attribute is used to specify whether to allow single or multiple file selection.

Components to accept the input: Select box

This selection box has two options:

1. Single

2. Multiple

Example: User wants to allow multiple file selection as shown in the image below highlighted in red
oval.

Usage: Select type “Multiple” as shown in the image below.

Available Attributes

 128

User Interface Workbench 128

11.18 Enter Allowed File Extensions:

Description: This attribute is used to specify the file extensions that can be uploaded. If not
specified, accept all file types.

Component to accept the input: Input text

In the image above, there is information text written under the input text. Example[‘.jpg’, ‘.png’]

All extensions must be in an array, separated by a comma (,), surrounded by single quotes(‘ ‘) and
start with full stop (.).

Example: User wants to accept only the following file extension.

“jpg”, “png”, “gif”

Usage: array will be [‘.jpg’,’.png’,’.gif’]

Enter this array in an input box as shown in the image below.

11.19 Image source:

Description: This attribute is used to specify the path or source of an image.

Components to accept the input: Input Text

Example: User wants to add an image, available at “composites/avatar-image.jpg” location.

Usage: Enter this path “composites/avatar-image.jpg” in the input text as shown in the image below.

Note: Use single quotes if path is of type string.

Available Attributes

 129

User Interface Workbench 129

If path is stored in a variable, write that variable name as shown in the image below. Example
variable name is “image”.

11.20 Enter Minimum Length:

Description: This attribute is used to specify the minimum allowed value. This number is used in the
range validator; if the value is less than the minimum value then the range validator flags an error to
the user . The down arrow is disabled when the minimum value is reached.

Component to accept the input: Input Text

Example: User want sto set the minimum value as 5 as shown in the image below.

Usage: Enter 5 in the input text as shown in the image below.

Note: Do not write number in quotes.

Available Attributes

 130

User Interface Workbench 130

11.21 Enter Maximum Length:

Description: This attribute is used to specify the maximum allowed value. This number is used in the
range validator; if the value is greater than the maximum value then the range validator flags an error
to the user . The up arrow is disabled when the maximum value is reached.

Component to accept the input: Input Text

Example: User wants to set the maximum value as 15 as shown in the image below.

Usage: Enter 15 in the input text as shown in the image below.

Note: Do not write number in quotes.

11.22 Enter Step:

Description: This attribute is used to specify the size of the step to take when spinning via buttons.
Step must be a number greater than 0, otherwise an exception is thrown. It defaults to 1. To
understand more about step attribute refer
http://jet.us.oracle.com/6.1.0/jsdocs/oj.ojInputNumber.html#step

Component to accept the input: Input Text

Example: User wants to set the step value as 2.

http://jet.us.oracle.com/6.1.0/jsdocs/oj.ojInputNumber.html#step

Available Attributes

 131

User Interface Workbench 131

Value of input number is 5. If user clicks the up arrow, value will increment by 2 and it will be 7 as
shown in the image below.

Now value of input number is 7. If user clicks the down arrow, value will decrement by 2 and it will be
5 as shown in the image below.

Usage: Enter 2 in the input text as shown in the image below.

Note: Do not write number in quotes.

11.23 Source variable:

Description: This attribute is used to specify the data source for the list/table/tree. A Data source is
a variable, which stores the data that needs to be displayed on the screen in the form of a
list/table/tree.

Input Text

Example: User has stored data in a variable named as “deptArray”.

Note: In case of Tree element, this variable must be in JN format.

Usage: Enter this variable in an input box as shown in the image below.

Available Attributes

 132

User Interface Workbench 132

11.24 Id attribute:

 Description: This attribute is used to specify the column name that contains the unique key from the
data source of the list/table. A Unique key i.e. a column is used to identify an item of list/table
uniquely.

Component to accept the input: Input Text

Example: User has a data source deptArray, which has the following data.

Var deptArray= [

{DepartmentId: 10, DepartmentName: 'Administration', LocationId: 200},

{DepartmentId: 20, DepartmentName: 'Marketing', LocationId: 200},

{DepartmentId: 30, DepartmentName: 'Purchasing', LocationId: 200}];

Usage: In this example, the column, which is a unique key, is “DepartmentId”. Because value of every
“DepartmentId” is unique.

Enter this column name in an input box as shown in the image below.

11.25 Renderer ID:

Description: This attribute is used to specify the id of a renderer that user have created for list/tree.
To understand what is renderer and how to create it rerfer Arun’s

Components to accept the input: Input text

Example: User has created a renderer with the id as “item_template”.

Usage: Enter “item_template” in an input box as shown in the image below.

Available Attributes

 133

User Interface Workbench 133

11.26 Pagination:

Description: This attribute is used to apply pagination to list/table.

Components to accept the input: Switch

When user enables the switch, it will display an input text and accordion as shown in the image
below.

1) Page Size : This is used to specify the page size i.e. how many records should be visible to the

user on the first page.

For example, user has given page size as 3, only first three records will be visible to the user as
shown in the image below.

2) Page Options: When user expands this accordion, it shows multiple page options as shown in

the image below.

Available Attributes

 134

User Interface Workbench 134

3) Layout: This option is used to specify how the paging navigation controls should be display ed.

It has following six options:

a) All: Display all controls

b) Auto: The Paging Control decides which controls to display .

c) Input: Display the page input control

Available Attributes

 135

User Interface Workbench 135

d) Navigation: Display the navigation arrows

e) Pages: Display the page links

f) RangeText: Display the page range text control

1) Maximum PageLinks: This option is used to give the maximum number of page links to display .

An ellipsis '...' will be displayed for pages, which exceed the maximum number as shown in the

image below. maxPageLinks must be greater than 4.

Available Attributes

 136

User Interface Workbench 136

2) Orientation: This option is used to give the orientation of the page links.

It has following options:

a) Horizontal: This option is used to align the page links horizontally.

b) Vertical: This option is used to align the page links vertically.

Example: User wanst a pagination with following options.

Page size: 4

Layout : ‘All’

Max PageLinks: “5”

Orientation: “Horizontal”

Usage: Enter all the options as shown in the image below.

Available Attributes

 137

User Interface Workbench 137

11.27 Indexer:

Description: The JET Indexer is usually asciated with a scrollable JET ListView. It provides a list of
sections that corresponds to group headers in ListView. When a section is selected, the
corresponding group header will be scroll to the top of the ListView.

Components to accept the input: Switch

When user enables this switch, it will display an input box as shown in the image below.

Indexer key: This field accepts the key of the data on which grouping is based on.

Example: User wants a list with indexer and user want to group all list items based on the surname as
shown in the image below.

Available Attributes

 138

User Interface Workbench 138

Usage: Assume user have following data urce of the list.

dataurce= [{id: "1", first_name: "", last_name: "Dunphy"},

{id: "100", first_name: "Mozhe", last_name: "Atkinn"},

{id: "101", first_name: "Simon", last_name: "Austin"},

{id: "200", first_name: "Hermann", last_name: "Baer"},

{id: "201", first_name: "Shelli", last_name: "Baida"},

………

{id: "2300", first_name: "Eleni", last_name: "Zlotkey"}]

Here surname is stored in last_name key.

Enable the switch and enter the indexer key as “last_name” as shown in the image below.

Available Attributes

 139

User Interface Workbench 139

11.28 ID:

Description: This attribute is used to specify the id attribute for menu. This id attribute is used to
launch the menu.

Components to accept the input: Input text

Example: User wants to give the id as “actionMenu”.

Usage: Enter “actionMenu” in an input box as shown in the image below.

Note: Use single quotes if it is a simple string.

If it is a combination of a string and a variable, for example string is “actionMenu” and variable is
“$data.index” then ID will be “ ‘actionMenu’ + $data.index ” as shown in the image below

11.29 Enter menu launcher:

Description: This attribute is used to specify the DOM Element, which may or may not be a JET
element that launches the menu. For example anchor tag (<a>) or oj-button.

Components to accept the input: Select box

This select box lists the name of all clickable elements that user has added in page. For example,
anchor tag and button.

First option “Actions” is a name of the anchor tag and second option “Open Menu” is a name of the
button.

Available Attributes

 140

User Interface Workbench 140

Example: User wants to open menu on the click of an anchor tag “Actions” as shown in the image
below.

Usage: Select the “Actions” anchor tag option as shown in the image below.

11.30 Columns:

Description: This attribute is used to add the columns of a table.

Component to accept the input: Accordion, Buttonset and Input text

When user expands the “Columns” accordion, it shows a buttonset, with custom and external options
as shown in the image below.

These are two ways to add columns of the table.

1) Custom: When user clicks this option, it shows three input text as shown in the image below.

Available Attributes

 141

User Interface Workbench 141

2) Enter Field: This field is used to specify the data field the column refers to i.e. the data of the

column.

3) Enter HeaderText: This field is used to specify the text to display in the header of the column i.e.

name of the column

4) Enter Class: This field is used to specify the CSS class to apply to the column cells.

User can add more columns using “Add Columns” link highlighted in green oval in the above image.

User can delete the columns using an icon highlighted in red oval in the above image.

5) External: By default, this option will be selected. When user click this option, it shows an input

text as shown in the image below.

Available Attributes

 142

User Interface Workbench 142

6) Variable name: This accepts the variable name in which columns information is stored.

Example:

1) Custom: User has a table, which display s Department name and manager ID as shown in the

image below.

Data source of the table is as following.

var deptArray = [

 {DepartmentName: 'ADFPM 1001 neverending',ManagerId: 300},

 {DepartmentName: 'BB', ManagerId: 300},

 {DepartmentName: 'Administration', ManagerId: 300},

{DepartmentName: 'Marketing', , ManagerId: 300];

a) For the first column i.e. “Department Name”

 Name of the column is Department Name, headerText is “Department Name”.

 Data of the column is stored in the field DepartmentName (refer the deptArray), field

is “DepartmentName”.

 No class is needed.

Usage: Enter all these information as shown in the image below.

Available Attributes

 143

User Interface Workbench 143

b) For the second column i.e. “Manager ID”.

 Name of the column is Manager ID, headerText is “Manager ID”.

 Data of the column is stored in the field ManagerId (refer the deptArray), field is
“ManagerId”.

 Class is “oj-sm-12”

Usage: To add this column, click “Add columns”. It will add one more column and add all the
details as shown in the image below.

2) External: If user wants to display the same table used in above example.

User wants to make first column resizable, which can be done by adding resizable: enabled

configuration to the column. But in custom type there is no option to add this configuration

because it accepts only headerText, field and class.

In such cases, where column has more configuration, use “External” type.

Create one variable “columnsArray”. Add two objects for two columns. In those objects, user can
add any configuration needed for the column.

columnsArray = [{"headerText": "Department Name",

 "field": "DepartmentName",

 "resizable": "enabled"},

 {"headerText": "Manager Id",

 "field": "ManagerId",

 "class": "oj-sm-2"}]

As user can see for the first column, “Department Name”, resizable: enabled configuration is
added.

Available Attributes

 144

User Interface Workbench 144

Usage: Enter this variable name in an input box as shown in the image below.

11.31 Row renderer:

Description: This attribute is used to specify the id of a renderer for table. This is only valid if
user have added any row renderer for the table.

If user has a simple data to display i.e. every column of the table, display some text. In that
case, user do not need any row renderer. Refer the image below.

However, in the table, input fields such as input text, checkboxes or anchor tag have to be
added. In that case, user needs a row renderer. For example in the following image, there is
checkbox highlighted in red oval and input text highlighted in green oval inside the table. To
understand what is renderer and how to create it refer renderer section.

Components to accept the input: Switch, Input box

Available Attributes

 145

User Interface Workbench 145

When user enables the switch, it shows an input box named as “Row template”.

Example: User has created a renderer with the id as “item_template”.

Usage: Enter “item_template” in an input box as shown in the image below.

11.32 Aria label

Description: This attribute is used to specify the aria label of the tag.

Components to accept the input: Input text

Example: User wants aria label as “Accounts”.

Usage: Enter “Accounts” in an input box as shown in the image below.

Available Attributes

 146

User Interface Workbench 146

11.33 Tag type:

Description: This attribute is used to specify the type of tag.

Components to accept the input: Select box

This select box has five options:

1. Div : It is a block-level element. A block-level element always starts on a new line and takes
up the full width available.

2. Span: It is an inline element. An inline element does not start on a new line and only takes up
as much width as necessary.

3. Label: It is a label tag of HTML. This element is used to associate a text label with a form
input field

4. H3: It is h3 tag of HTML. It represents a level 3 heading in an HTML.

As per requirement, select the type.

Example: User wants do display “Please do not refresh or hit back” text. And user wants other
text “Waiting” on the next line as shown in the image below.

Usage: Now in this example, our first text should occupy the whole line and second text should
start on the next line. As Div is a block element, it satisfies the requirement. When user adds
“Waiting” text and selects Div type as shown in the image below. “Waiting” text will start on a
new line.

Available Attributes

 147

User Interface Workbench 147

11.34 Binding source:

Description: This attribute is used to specify the use of the tag. For example, it can be used to
display text, or some value or an icon etc.

Components to accept the input: Select box

This select box has five options:

1) NLS: This option is used to display simple text. When user selects this option it will display

an input box named as “Label” as shown in the image below.

2) Bindings : This option is used to display value of some variable. When user selects this

option it will display a select box named as “Value” as shown in the image below. To know

more about value refer Value attribute section.

3) Icon: This option is used to display an icon. When user selects this option, it will display an

input box named as “Icon class name” as shown in the image below.

Available Attributes

 148

User Interface Workbench 148

4) After Renderer: This option is used to call a function after the DOM (Document Object Model)

has rendered the specific HTML code. When user selects this option, it will display an input

box named as “Enter Function Name” as shown in the image below. To know more about this

refer https://knockoutjs.com/documentation/template-binding.html

Example:

1) User wants to display simple text “Welcome” as shown in the image below.

Usage: As this is a simple text coming from Resource Bundle, select Type “NLS”.

Enter “Welcome” text in the “Label” input box as shown in the image below.

2) User wants to display “Welcome” which is stored in a variable.

Usage: Assume variable name is “tempVariable”. As this is stored in a variable and not coming
from Resource Bundle, select type “Binding Source”.

How to add a variable using Value attribute refer Value attribute section.

https://knockoutjs.com/documentation/template-binding.html

Available Attributes

 149

User Interface Workbench 149

3) User wants to display the user icon and password icon, highlighted in red oval in the image

below.

Usage: User icon class is “icons icon-user ”.

Select type “Icon”

Enter the user icon class “icons icon-user ” in the “Icon class name” input box as shown in the
image below.

4) User wants to execute some function once the specific elements are rendered on the screen.

Usage: Assume function name is "display Success”.

Select type “After renderer”

Enter function name “display Success” in the “Enter Function Name” input box as shown in the
image below.

Available Attributes

 150

User Interface Workbench 150

11.35 Enter rows

Description: This attribute is used to specify the number of visible text lines in the textarea. It
can be used to give specific height to the textarea.

Components to accept the input: Input text

Example: User want to add textarea with 3 rows as shown in the image below.

In the image above, only first three rows are visible to the user because the number of rows are
3. There is a scroll for other rows as shown in the image below.

Usage: Enter 3 in the input text as shown in the image below.

Available Attributes

 151

User Interface Workbench 151

11.36 Selected step:

Description: This attribute is used to specify the ID of the current selected step. Default is the
first step in the steps array.

Components to accept the input: Input text

Example: User wants to set step 2 as a selected step as shown in the image below.

Usage: Assume step array has following data:

Step_array = [{label:'Step One', id:'stp1'},

 {label:'Step Two', id:'stp2'},

 {label:'Step Three', id:'stp3'},

 {label:'Step Four', id:'stp4'},

 {label:'Step Five', id:'stp5'}];

Therefore, ID of second step is “stp2”. enter this id in the input text as shown in the image
below.

Available Attributes

 152

User Interface Workbench 152

11.37 REST API Chain and Hook Function

 REST API Chain: To understand what is chaining refer REST API Configuration section. This
select box lists all the REST API chaining that user have created in step four i.e. REST API
Configuration. From this select box, user can select REST API chain that user wants to fire when
an element is clicked.

 Hook function: There is a button named as “Open Editor”. When user clicks this button, it will
open a code editor as shown in the below image. In this editor, user can write the code user
wants to execute when the value of an element is changed.

To understand more about editor refer Open Editor of hook function section

Example:

1. User want to give an option to use a form as a template. It has an input text to accept the
template name as shown in the image below. And it has an anchor tag that checks for the
availability of the name entered by the user highlighted in a green oval as shown in the image
below.

Available Attributes

 153

User Interface Workbench 153

In this example, user needs to fire a rest to check the availability of the name.

Usage:

Select the REST API, user needs to fire when user clicks the Check Availability option as shown
in the image below.

If user click the “Open Editor” button, it will open the code editor.

There is some code already written inside the editor, the tool has generated this code. When
user selects any REST API, the tool generates the required code to execute that REST API.
However, in some cases, there is need to do some additional operation on the data, fetched
from the server. Therefore, for this purpose, there is a support for code editor, to let user write its
own code. In such scenarios, use the response (highlighted in red circle in the image above) for
further processing.

 Whenever user clicks this option, it will execute the block of code written inside the editor.

Available Attributes

 154

User Interface Workbench 154

2. User want to create an invoice. On clicking Create New Invoice button, navigate should be to
the form of creating an invoice.

Usage: In this example user do not need to fire any REST API, user will not select any REST
API.

Click the “Open Editor” button, and write code inside the editor as shown in the image below.

Function has two parameters event and data. User can use these parameters in code if
required.

Note: As there is no REST API selected, there will be no auto-generated code.

Available Attributes

 155

User Interface Workbench 155

11.38 Select Type of Container

1. Normal Container: This is the most basic type of container which is used to group an element to:

 apply a common style

 repeat a form section on page

 hide and display form section

 apply grid size to a form section

 Example:

In the below example, normal container option has been selected. Two elements will be added
with a gap in between them. User can drop any form element inside it.

In the below image an input box and date picker are added inside a normal container.

Available Attributes

 156

User Interface Workbench 156

2. Partial: Partials are small unit of the page which can be reused.

Example:

When user chooses a container type as partial and create a component, an extra file will be
created in partials folder along with other artefacts (refer creating component) at location.
ChannelPath/partials/you_module/label.html.

Generated partials:

To use it, refer component loader or select type ‘create and load’ to use is at same location
where container is dropped.

Select Type:

 Create : to create the partial.

 Create And Load : to create and load the partial.

Available Attributes

 157

User Interface Workbench 157

3. Modal Window:

Usage: This container type is used to display the layout in overlay window or dialog box.

Example:

4. Renderer

Usage: Renderer are used to design row of Table or ListView.

For reference go to http://jet.us.oracle.com/.

 Container ID: This Id will be mapped to Row Template in case of Table or Renderer Id in
case of ListView (refer Table and ListView Section).

5. Button Container:

Usage: This container is used to display one or more button as the call to action button. Only
buttons can be placed inside this container

Example:

http://jet.us.oracle.com/

Available Attributes

 158

User Interface Workbench 158

6. Accordion:

Usage: A vertically stacked element which allows the user to toggle between sections of content
is an accordion. Accordion container is used to create a group of collapsible items. A collapsible
container is dropped inside it. To know about accordion and its use follow the link:

http://jet.us.oracle.com/jetCookbook.html?component=accordion&demo=basicAccordion.

 Example:

http://jet.us.oracle.com/jetCookbook.html?component=accordion&demo=basicAccordion

Available Attributes

 159

User Interface Workbench 159

7. Collapsible:

Usage: Collapsible container can contain any element inside it which the user uses to toggle
between sections of content. To know more about collapsible visit
http://jet.us.oracle.com/jetCookbook.html?component=collapsible&demo=basicCollapsible.

Note: UX Extensibility Toolkit and UI Workbench are used interchangeably

http://jet.us.oracle.com/jetCookbook.html?component=collapsible&demo=basicCollapsible

